Remaining Useful Life Prediction Using Deep Multi-scale Convolution Neural Networks
نویسندگان
چکیده
منابع مشابه
Gear Remaining Useful Life Prediction Based on Grey Neural Network
The condition monitoring data of gears is asymmetric distributed, moreover, sampling is usually conducted discontinuously in practice. Thus makes it difficult to predict gear remaining useful life accurately considering the two reasons above. In this paper, a fusion method is proposed using Elman Neural Network to modify residual series of grey model since Elman Neural Network performs better o...
متن کاملBayesian Approach for Remaining Useful Life Prediction
Prediction of the remaining useful life (RUL) of critical components is a non-trivial task for industrial applications. RUL can differ for similar components operating under the same conditions. Working with such problem, one needs to contend with many uncertainty sources such as system, model and sensory noise. To do that, proposed models should include such uncertainties and represent the bel...
متن کاملUsing Deep Learning Based Approaches for Bearing Remaining Useful Life Prediction
Traditional data driven prognostics requires establishing explicit model equations and much prior knowledge about signal processing techniques and prognostic expertise, and therefore is limited in the age of big data. This paper presents a deep learning based approach for bearing remaining useful life (RUL) prediction with big data. This approach has the ability to automatically extract importa...
متن کاملPredicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks
We consider the problem of estimating the remaining useful life (RUL) of a system or a machine from sensor data. Many approaches for RUL estimation based on sensor data make assumptions about how machines degrade. Additionally, sensor data from machines is noisy and oen suers from missing values in many practical seings. We propose Embed-RUL: a novel approach for RUL estimation from sensor d...
متن کاملSkin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks
Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/1043/3/032011